How 2 quasars at the dawn of time could be a Rosetta stone for the early universe


A double quasar spiraling toward a great merger has been discovered lighting up the “cosmic dawn,” just 900 million years after the Big Bang.

They are the first quasar pair spotted that far back in cosmic time.

Quasars are rapidly growing supermassive black holes in the cores of hyperactive galaxies. Torrents of gas are thrust down the black holes’ throats and get hung up in the bottleneck of an accretion disk, which is a dense ring of ultrahot gas that is queuing up to fall into the black hole. Not all of it does fall in; magnetic fields wrapped up in the rotating accretion disk are able to whip up lots of charged particles and beam them back into deep space in the form of two jets racing away at almost the speed of light. The jets and accretion disk combined make the quasar appear highly luminous, even across billions of light-years.

This illustration depicts two quasars in the process of merging. Using both the Gemini North telescope and the Subaru Telescope, a team of astronomers have discovered a pair of merging quasars seen only 900 million years after the Big Bang. Not only is this the most distant pair of merging quasars ever found, but also the first confirmed pair found in the period of the universe known as cosmic dawn. (Image credit: International Gemini Observatory/NOIRLab/NSF/AURA/M. Garlick)

Since each large galaxy has a monstrous black hole as its dark heat, when galaxies collide and merge, eventually so too do their supermassive black holes. Back during the cosmic dawn — which describes the first billion years of cosmic history, when stars and galaxies first appeared on the scene — the expanding universe was smaller than it is today, and therefore galaxies were closer together and merged more often. Yet while over 330 lone quasars have been spotted so far in the universe’s first billion years, the expected abundant population of double quasars has been notable by their absence — until now.



Source link