Built on a 22-nm process, Silicon Labs’ SiXG301 and SiXG302 wireless SoCs deliver improved compute performance and energy efficiency. As the first members of the Series 3 portfolio, they target both line- and battery-powered IoT devices.
Designed for line-powered applications such as LED smart lighting, the SiXG301 integrates an LED pre-driver and a 32-bit Arm Cortex-M33 processor running at up to 150 MHz. It supports concurrent multiprotocol operation with Bluetooth, Zigbee, and Matter over Thread, and includes 4 MB of flash and 512 kB of RAM. Currently in production with select customers, the SiXG301 is expected to be generally available in Q3 2025.
Extending the Series 3 platform to battery-powered applications, the SiXG302 features a power-efficient architecture that consumes just 15 µA/MHz when active—up to 30% lower than comparable devices. It is well-suited for battery-powered wireless sensors and actuators using Matter or Bluetooth. Sampling is expected to begin in 2026.
The SiXG301 and SiXG302 families will initially include two types of devices: ‘M’ variants (SiMG301 and SiMG302) for multiprotocol support, and ‘B’ variants (SiBG301 and SiBG302) optimized for Bluetooth LE.
The post Wireless SoCs drive IoT efficiency appeared first on EDN.