AOS devices power 800-VDC AI racks


GaN and SiC power semiconductors from AOS support NVIDIA’s 800-VDC power architecture for next-gen AI infrastructure, enabling data centers to deploy megawatt-scale racks for rapidly growing workloads. Moving from conventional 54-V distribution to 800 VDC reduces conversion steps, boosting efficiency, cutting copper use, and improving reliability.

The company’s wide-bandgap semiconductors are well-suited for the power conversion stages in AI factory 800‑VDC architectures. Key device roles include:

  • High-Voltage Conversion: SiC devices (Gen3 AOM020V120X3, topside-cooled AOGT020V120X2Q) handle high voltages with low losses, supporting power sidecars or single-step conversion from 13.8 kV AC to 800 VDC. This simplifies the power chain and improves efficiency.
  • High-Density DC/DC Conversion: 650-V GaN FETs (AOGT035V65GA1) and 100-V GaN FETs (AOFG018V10GA1) convert 800 VDC to GPU voltages at high frequency. Smaller, lighter converters free rack space for compute resources and enhance cooling.
  • Packaging Flexibility: 80-V and 100-V stacked-die MOSFETs (AOPL68801) and 100-V GaN FETs share a common footprint, letting designers balance cost and efficiency in secondary LLC stages and 54-V to 12- V bus converters. Stacked-die packages boost secondary-side power density.

AOS power technologies help realize the advantages of 800‑VDC architectures, with up to 5% higher efficiency and 45% less copper. They also reduce maintenance and cooling costs.

Empowering Humanoid Robots with Ferri Embedded Storage Solutions 

10.15.2025

AI Drives Memory Industry Transformation: GMIF2025 Charts the Course for Future Innovation 

10.13.2025

Five Innovative Practices for Capacitors in the Era of Third-Generation Semiconductors 

10.08.2025

Alpha & Omega Semiconductor



Source link